Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.397
Filter
1.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542855

ABSTRACT

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , Carbamates/pharmacology , Thiophanate , Anti-Bacterial Agents
2.
Respir Res ; 24(1): 148, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37269004

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease with few effective therapeutic options. Recently, drug repositioning, which involves identifying novel therapeutic potentials for existing drugs, has been popularized as a new approach for the development of novel therapeutic reagents. However, this approach has not yet been fully utilized in the field of pulmonary fibrosis. METHODS: The present study identified novel therapeutic options for pulmonary fibrosis using a systematic computational approach for drug repositioning based on integration of public gene expression signatures of drug and diseases (in silico screening approach). RESULTS: Among the top compounds predicted to be therapeutic for IPF by the in silico approach, we selected BI2536, a polo-like kinase (PLK) 1/2 inhibitor, as a candidate for treating pulmonary fibrosis using an in silico analysis. However, BI2536 accelerated mortality and weight loss rate in an experimental mouse model of pulmonary fibrosis. Because immunofluorescence staining revealed that PLK1 expression was dominant in myofibroblasts while PLK2 expression was dominant in lung epithelial cells, we next focused on the anti-fibrotic effect of the selective PLK1 inhibitor GSK461364. Consequently, GSK461364 attenuated pulmonary fibrosis with acceptable mortality and weight loss in mice. CONCLUSIONS: These findings suggest that targeting PLK1 may be a novel therapeutic approach for pulmonary fibrosis by inhibiting lung fibroblast proliferation without affecting lung epithelial cells. In addition, while in silico screening is useful, it is essential to fully determine the biological activities of candidates by wet-lab validation studies.


Subject(s)
Drug Repositioning , Idiopathic Pulmonary Fibrosis , Mice , Animals , Thiophenes/therapeutic use , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Lung/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Fibroblasts/metabolism , Bleomycin/pharmacology
3.
Acta Parasitol ; 68(3): 535-547, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37330945

ABSTRACT

PURPOSE: Fasciola hepatica is a globally distributed trematode that causes significant economic losses. Triclabendazole is the primary pharmacological treatment for this parasite. However, the increasing resistance to triclabendazole limits its efficacy. Previous pharmacodynamics studies suggested that triclabendazole acts by interacting mainly with the ß monomer of tubulin. METHODS: We used a high-quality method to model the six isotypes of F. hepatica ß-tubulin in the absence of three-dimensional structures. Molecular dockings were conducted to evaluate the destabilization regions in the molecule against the ligands triclabendazole, triclabendazole sulphoxide and triclabendazole sulphone. RESULTS: The nucleotide binding site demonstrates higher affinity than the binding sites of colchicine, albendazole, the T7 loop and pßVII (p < 0.05). We suggest that the binding of the ligands to the polymerization site of ß-tubulin can lead a microtubule disruption. Furthermore, we found that triclabendazole sulphone exhibited significantly higher binding affinity than other ligands (p < 0.05) across all isotypes of ß-tubulin. CONCLUSIONS: Our investigation has yielded new insight on the mechanism of action of triclabendazole and its sulphometabolites on F. hepatica ß-tubulin through computational tools. These findings have significant implications for ongoing scientific research ongoing towards the discovery of novel therapeutics to treat F. hepatica infections.


Subject(s)
Anthelmintics , Fasciola hepatica , Fascioliasis , Animals , Triclabendazole/pharmacology , Triclabendazole/metabolism , Triclabendazole/therapeutic use , Tubulin/genetics , Molecular Docking Simulation , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Ligands , Sulfones/metabolism , Sulfones/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Fascioliasis/parasitology
4.
Sci Rep ; 13(1): 7752, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173326

ABSTRACT

Prolonged parenteral nutrition (PN) can lead to PN associated cholestasis (PNAC). Intestinally derived lipopolysaccharides and infused PN phytosterols lead to activation of NFκB, a key factor in PNAC. Our objective was to determine if inhibition of HNF4α could interfere with NFκB to alleviate murine PNAC. We showed that HNF4α antagonist BI6015 (20 mg/kg/day) in DSS-PN (oral DSS x4d followed by Total PN x14d) mice prevented the increased AST, ALT, bilirubin and bile acids and reversed mRNA suppression of hepatocyte Abcg5/8, Abcb11, FXR, SHP and MRP2 that were present during PNAC. Further, NFκB phosphorylation in hepatocytes and its binding to LRH-1 and BSEP promoters in liver, which are upregulated in DSS-PN mice, were inhibited by BI6015 treatment. BI6015 also prevented the upregulation in liver macrophages of Adgre1 (F4/80) and Itgam (CD11B) that occurs in DSS-PN mice, with concomitant induction of anti-inflammatory genes (Klf2, Klf4, Clec7a1, Retnla). In conclusion, HNF4α antagonism attenuates PNAC by suppressing NFκB activation and signaling while inducing hepatocyte FXR and LRH-1 and their downstream bile and sterol transporters. These data identify HNF4α antagonism as a potential therapeutic target for prevention and treatment of PNAC.


Subject(s)
Cholestasis , Mice , Animals , Cholestasis/metabolism , Liver/metabolism , Benzimidazoles/metabolism , Parenteral Nutrition , NF-kappa B/metabolism
5.
Bioorg Chem ; 137: 106588, 2023 08.
Article in English | MEDLINE | ID: mdl-37167705

ABSTRACT

H+, K+-ATPase, as the most critical enzyme in gastric acid secretion, has long been an attractive target for the treatment of acid-related diseases. In this study, a series of benzimidazole derivatives were designed and synthesized through conformational restriction and skeleton hopping strategies by using vonoprazan as the lead compound. Among them, compounds A12 (IC50 = 9.32 µM) and A18 (IC50 = 5.83 µM) showed better inhibition at the enzyme level. In addition, gastric acid secretion inhibition was assessed in vivo, and the results showed that A12 and A18 significantly inhibited basal gastric acid secretion, 2-deoxy-d-glucose (2DG) stimulated gastric acid secretion and histamine-stimulated gastric acid secretion. In further in vitro metabolic experiments, A12 and A18 demonstrated excellent stability and low toxicity. Pharmacokinetic studies showed that the p.o. and i.v. half-lives of A18 were 3.21 h and 8.67 ± 1.15 h, respectively. In summary, A18 might be a novel and effective potassium-competitive acid blocker, and this study provides strong support for it use in the treatment of acid-related diseases.


Subject(s)
Gastric Acid , Proton Pump Inhibitors , Proton Pump Inhibitors/pharmacology , Gastric Acid/metabolism , Potassium , Histamine/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , H(+)-K(+)-Exchanging ATPase/metabolism
6.
Biochemistry (Mosc) ; 88(2): 189-201, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37072326

ABSTRACT

Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.


Subject(s)
Calcium , Dystrophin , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Calcium/metabolism , Mice, Inbred mdx , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , Mitochondria, Heart/metabolism
7.
J Hazard Mater ; 445: 130558, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36495641

ABSTRACT

Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Proteomics , Ammonia/metabolism , Albendazole , Thiabendazole , Nitrification , Bacteria/metabolism , Archaea/metabolism , Biotransformation , Oxidation-Reduction , Benzimidazoles/toxicity , Benzimidazoles/metabolism , Phylogeny
8.
J Biomol Struct Dyn ; 41(10): 4368-4382, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35475501

ABSTRACT

There are only two drugs for the treatment of Chagas disease, namely, nifurtimox and benznidazole, that can cause several adverse effects. Despite the effectiveness of these drugs in the disease's acute phase, they are not recognized as curative in the chronic phase, establishing the need for more effective treatment in all stages of the disease. Cruzain is an enzyme that plays a vital role in the life cycle of the etiologic agent, the protozoan Trypanosoma cruzi, being relevant as a therapeutic target in the planning of new drugs. Using molecular docking and dynamics simulations, we have investigated the structural and dynamic factors that can be involved in the enzyme inhibition process at the atomic-molecular level by benzimidazole compounds that are potent cruzain inhibitors with in vitro trypanocidal activity. The study suggests that these inhibitors bind cruzain through steric and hydrogen bonding interactions without altering its secondary structure content and protein compaction. Besides, we observed that these inhibitors decrease the correlation of movements between Cα-atoms of cruzain, increasing the number of atomic communities, mainly in the α-helix that presents the catalytic Cys25 residue. As expected, we also observed a correlation between the inhibitory activity of each inhibitor and their respective binding-free energies, reinforcing that the affinity of the complexes seems to be a relevant factor for enzymatic inhibition. Hence, the results presented in this work contribute to a better understanding of the cruzain enzyme inhibition mechanism through competitive and non-covalent inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Trypanocidal Agents , Trypanosoma cruzi , Molecular Docking Simulation , Cysteine Endopeptidases/chemistry , Protozoan Proteins , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Cysteine Proteinase Inhibitors/chemistry
9.
PLoS Negl Trop Dis ; 16(10): e0010483, 2022 10.
Article in English | MEDLINE | ID: mdl-36190997

ABSTRACT

BACKGROUND: The potentially lethal zoonosis alveolar echinococcosis (AE) is caused by the metacestode larval stage of the tapeworm Echinococcus multilocularis. Current AE treatment options are limited and rely on surgery as well as on chemotherapy involving benzimidazoles (BZ). BZ treatment, however, is mostly parasitostatic only, must be given for prolonged time periods, and is associated with adverse side effects. Novel treatment options are thus urgently needed. METHODOLOGY/PRINCIPAL FINDINGS: By applying a broad range of kinase inhibitors to E. multilocularis stem cell cultures we identified the proto-oncogene PIM kinase as a promising target for anti-AE chemotherapy. The gene encoding the respective E. multilocularis ortholog, EmPim, was characterized and in situ hybridization assays indicated its expression in parasite stem cells. By yeast two-hybrid assays we demonstrate interaction of EmPim with E. multilocularis CDC25, indicating an involvement of EmPim in parasite cell cycle regulation. Small molecule compounds SGI-1776 and CX-6258, originally found to effectively inhibit human PIM kinases, exhibited detrimental effects on in vitro cultured parasite metacestode vesicles and prevented the formation of mature vesicles from parasite stem cell cultures. To improve compound specificity for EmPim, we applied a high throughput in silico modelling approach, leading to the identification of compound Z196138710. When applied to in vitro cultured metacestode vesicles and parasite cell cultures, Z196138710 proved equally detrimental as SGI-1776 and CX-6258 but displayed significantly reduced toxicity towards human HEK293T and HepG2 cells. CONCLUSIONS/SIGNIFICANCE: Repurposing of kinase inhibitors initially designed to affect mammalian kinases for helminth disease treatment is often hampered by adverse side effects of respective compounds on human cells. Here we demonstrate the utility of high throughput in silico approaches to design small molecule compounds of higher specificity for parasite cells. We propose EmPim as a promising target for respective approaches towards AE treatment.


Subject(s)
Echinococcus multilocularis , Parasites , Animals , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Echinococcosis , Echinococcus multilocularis/genetics , HEK293 Cells , Humans , Mammals , Proto-Oncogene Proteins c-pim-1
10.
Curr Protoc ; 2(9): e531, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36066206

ABSTRACT

Mitochondria are fundamental for human spermatozoa motility and fertilizing ability. Mitochondria participate not only in ATP production, but also in reactive oxygen species production, redox equilibrium, and calcium regulation, all of which are central for human spermatozoa motility, capacitation, acrosome reaction, and ultimately, oocyte fertilization. Mitochondrial membrane potential is a key indicator of mitochondrial health and activity. Most commonly used methods for the study of mitochondrial membrane potential, however, cannot be applied to human spermatozoa due to their unique characteristics, including high motility and time-dependent decay of quality, limiting the study of this important parameter in these cells. Here, we describe an easy, fast, and cheap protocol for the quantitative evaluation of human spermatozoa mitochondrial membrane potential, using the fluorescent cationic dye 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1). JC-1 is a sensitive marker for mitochondrial membrane potential, exhibiting a potential-dependent accumulation in the mitochondria. At high mitochondrial membrane potential, JC-1 forms J-aggregates, which emit red fluorescence, whereas at low mitochondrial membrane potential, JC-1 remains at its monomer state, which emits green fluorescence. We first describe how to evaluate human spermatozoa mitochondrial membrane potential using JC-1 and a fluorescence plate reader, for high-throughput studies. The calculation of the JC-1 ratio (indicative of the J-aggregates/monomers ratio) is then used to quantitatively evaluate mitochondrial health and activity. In addition, we describe an imaging protocol for the qualitative evaluation of human spermatozoa mitochondrial membrane potential using a fluorescence microscope. This allows for a visual analysis of the results that can complement the quantitative data. These protocols can be used to study the effects of spermatozoa exposure to compounds of interest, and alterations due to diseases or different conditions. While these protocols are illustrated with human spermatozoa, they can be adapted and used on spermatozoa of different species. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Quantitative evaluation of human spermatozoa mitochondrial membrane potential using the JC-1 dye and a fluorescence plate reader Basic Protocol 2: Qualitative evaluation of human spermatozoa mitochondrial membrane potential using the JC-1 dye and fluorescence microscopy Support Protocol: Preparation of the JC-1 working solution.


Subject(s)
Benzimidazoles , Spermatozoa , Benzimidazoles/metabolism , Carbocyanines/metabolism , Fluorescent Dyes/metabolism , Humans , Male , Membrane Potential, Mitochondrial , Spermatozoa/metabolism
11.
J Phys Chem B ; 126(38): 7310-7320, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36112099

ABSTRACT

DNA-protein interactions are ubiquitous in cellular processes. Impeding unwanted nucleic acid interactions and protein recognition have therapeutic implications. Therefore, new chemical scaffolds and studies related to their structural basis of nucleic acid recognition are essential for developing high-affinity DNA binders. In this study, we have employed a fragment-based strategy to design and synthesize benzimidazole-guanidinium hybrid compounds and study the individual fragment's role in imparting selectivity and specificity in DNA recognition. The fragments were extensively studied using thermal denaturation, circular dichroism, UV-vis absorption spectroscopy, and molecular docking techniques. The results indicate an interdependent role of the benzimidazole core, polar ends, and the DNA composition in imparting sequence-selective binding of the benzimidazole-guanidinium hybrid compounds in the DNA minor groove. Circular dichroism and molecular docking studies indicated minor groove binding analogous to classical minor groove binders such as DAPI and Hoechst 33258. Thermal denaturation studies indicated that the best binder (compound 8) gave similar thermal stabilization to B-DNA as given by DAPI.


Subject(s)
Bisbenzimidazole , DNA, B-Form , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Circular Dichroism , DNA/chemistry , Guanidine/chemistry , Molecular Docking Simulation , Nucleic Acid Conformation
12.
Eur J Med Chem ; 241: 114629, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35961070

ABSTRACT

Quorum sensing (QS) inhibition is one of the potential methods to target bacterial infection. In this study, comprehensive molecular dynamics simulation (MDS) experiments were conducted on the LasR structure to understand its structural dynamic behavior either in its ligand-free form or in its ligand-bound form (i.e. agonist or antagonist). The results revealed that LasR structure is significantly unstable in its ligand-free and antagonist-bound forms and such structural instability led eventually to complete dissociation of the functioning LasR dimeric form. Accordingly, twenty-eight benzimidazole derivatives were designed, synthesized as potential LasR antagonists, and characterized in vitro as QS inhibitors. Compounds 3d and 7f disclosed the highest percentage inhibition in biofilm formation, pyocyanin, and rhamnolipids production in Pseudomonas aeruginosa (71.70%, 68.70%, 54.00%) and (68.90%, 68.00%, 51.80%), respectively. MDS experiments revealed that these compounds as inhibitors, particularly, 3d, 7f, 8a, and 9g induce LasR structure instability and complete dissociation of its functioning dimeric form similarly to the previously reported inhibitor bromophenethyl-2-nitrobenzamide (BPNB). Furthermore, gene expression assays as another mechanism targeting quorum sensing genes to prove the inhibitory activity of these compounds on virulence factors, revealed that a number of the synthesized compounds were able to downregulate lasR (e.g. 3d and 7f by 61.70% and 26.00%, respectively) and rhlR (e.g. 7f by 16.30%) expressions. The results presented here provide a functional model for LasR that could guide future design of LasR inhibitors.


Subject(s)
Molecular Dynamics Simulation , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Biofilms , Pseudomonas aeruginosa/physiology , Quorum Sensing
13.
Article in English | MEDLINE | ID: mdl-35442868

ABSTRACT

As a typical and broad-spectrum benzimidazole, mebendazole (MBZ) has long been used in human and veterinary medicine to treat parasitic infestations, and is widely employed in the aquaculture of Japanese pufferfish (Takifugu rubripes). However, there have been no studies examining the pharmacokinetic characteristics of MBZ in Japanese pufferfish. Furthermore, the presence of MBZ and its metabolites in animal-derived raw food represents a notable safety concern. Here, we investigated the metabolism of MBZ using a UPLC-Q-TOF system. Additionally, we evaluated the pharmacokinetics of MBZ and two metabolites, 2-amino-5(6)-benzoylbenzimidazole (MBZ-NH2) and 5-hydroxymebendazole (MBZ-OH), in Japanese pufferfish following intramuscular injection of 20 mg/kg MBZ. We detected three metabolites of MBZ (M1-M3), among which, 2-amino-5(6)-(a-hydroxybenzyl) benzimidazole (M3) was detected in an aquatic animal for the first time. The plasma dispositions of MBZ, MBZ-NH2, and MBZ-OH were characterized by low plasma clearance, medium distribution volume, and long terminal half-life. Moreover, these compounds were widely distributed in the muscle, from which they were rapidly cleared. The pharmacokinetics and metabolism of mebendazole in Japanese pufferfish are described for the first time in this study. Our findings provide a basis for the rational application of MBZ in Japanese pufferfish farming and contribute to our understanding of the metabolism of MBZ in cultured fish.


Subject(s)
Mebendazole , Takifugu , Animals , Benzimidazoles/metabolism , Mebendazole/metabolism , Muscles/metabolism , Takifugu/metabolism
14.
J Sci Food Agric ; 102(1): 322-329, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34097749

ABSTRACT

BACKGROUND: Helminth infections in animals to be consumed by humans are an important medical and public health problem. Pharmaceutical research has focused on developing new anthelmintic drugs for parasite control in these animals. However, the incorrect use of anthelmintics can leave residues in animal products intended for human consumption. Their determination is therefore crucial in terms of food safety. RESULTS: In this work, a simple and sensitive method has been developed for the analysis of anthelmintic drugs in milk. The method involves extraction of the analytes using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, and separation and determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The use of a core-shell column significantly reduced the analysis time compared with conventional columns. The method was validated and applied to the analysis of different commercial milk samples: whole, semi-skimmed and skimmed cows' milk, and goats' milk. None of the benzimidazoles studied was found in the samples analyzed, so these were spiked with the analytes at three concentration levels (10, 50, and 100 µg kg-1 ). CONCLUSIONS: The proposed method provided high sensitivity compared with other methods for the determination of anthelmintics in milk samples, at concentration levels well below the established maximum residue limit (MRLs) values. The proposed method is simple, easy, precise, accurate, and leads to good recovery levels. It can be used successfully for the routine analysis. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Anthelmintics/analysis , Chromatography, Liquid/methods , Drug Residues/analysis , Food Contamination/analysis , Milk/chemistry , Tandem Mass Spectrometry/methods , Animals , Anthelmintics/metabolism , Benzimidazoles/analysis , Benzimidazoles/metabolism , Cattle , Drug Residues/metabolism , Food Safety , Goats , Humans , Milk/metabolism
15.
Pharmacol Res ; 178: 105954, 2022 04.
Article in English | MEDLINE | ID: mdl-34700018

ABSTRACT

Abemaciclib is the third cyclin-dependent kinase (CDK) 4/6 inhibitor approved for the treatment of breast cancer and currently under investigation for other malignancies, including brain cancer. Primarily CYP3A4 metabolizes abemaciclib, forming three active metabolites (M2, M20 and M18) that are likely relevant for abemaciclib efficacy and toxicity. We investigated the impact of ABCB1 (P-gp), ABCG2 (BCRP) and CYP3A on the pharmacokinetics and tissue distribution of abemaciclib and its metabolites using genetically modified mice. In vitro, abemaciclib was efficiently transported by hABCB1 and mAbcg2, and slightly by hABCG2, but the active metabolites were transported even better. Upon oral administration of 10 mg/kg abemaciclib, absence of Abcg2 and especially Abcb1a/1b significantly increased the plasma AUC0-24 h and Cmax of M2 and M18. Furthermore, the relative brain penetration of abemaciclib, M2 and M20 was dramatically increased by 25-, 4- and 60-fold, respectively, in Abcb1a/1b;Abcg2-/- mice, and to a lesser extent in single Abcb1a/1b- or Abcg2-deficient mice. The recovery of all active compounds in the small intestine content was profoundly reduced in Abcb1a/1b;Abcg2-/- mice, with smaller effects in single Abcb1a/1b-/- and Abcg2-/- mice. Our results indicate that Abcb1a/1b and Abcg2 cooperatively and profoundly limit the brain penetration of abemaciclib and its active metabolites, and likely also participate in their hepatobiliary or direct intestinal elimination. Moreover, transgenic human CYP3A4 drastically reduced the abemaciclib plasma AUC0-24 h and Cmax by 7.5- and 5.6-fold, respectively, relative to Cyp3a-/- mice. These insights may help to optimize the clinical development of abemaciclib, especially for the treatment of brain malignancies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Aminopyridines , Benzimidazoles , Cytochrome P-450 CYP3A , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Aminopyridines/metabolism , Aminopyridines/pharmacology , Animals , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Brain/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Pharmaceutical Preparations/metabolism
16.
Article in English | MEDLINE | ID: mdl-34735976

ABSTRACT

A systematic metabolite profiling approach has paramount importance in detecting, identifying, and characterizing drug metabolites. Till date, there is no report published on the comprehensive metabolic fate of flibanserin (FLB). In this study, the structure of entire potential metabolites of FLB has been elucidated by execution of in silico tool and high resolution mass spectrometry based metabolite profiling strategy employing data-dependent and data-independent approaches. In vitro metabolism profile was investigated after incubating FLB with liver microsomes (rat and human) and S9 fractions in presence of their respective co-factors. In vivo metabolites were identified from rat plasma, urine, feces, and brain tissue samples. An efficient extraction technique was developed that made it possible to identify the metabolites generated even in extremely low concentrations. Extraction was carried out by precipitating protein and thereafter solid-phase extraction to enrich their concentration in the sample before analysis. Fourteen new metabolites have been identified and characterized. Most of the metabolites of FLB were generated due to hydrolysis and oxidation followed by glucuronide, sulfate, and methyl conjugation. Additionally, a spiking study was employed to confirm the presence of N-oxide metabolite in human liver S9 fraction and rat urine samples. Moreover, we have established the probable biotransformation pathway of FLB and successfully analyzed the toxicity potential of the metabolites using Pro Tox-II software.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/metabolism , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Animals , Benzimidazoles/isolation & purification , Biotransformation , Feces/chemistry , Humans , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity , Solid Phase Extraction
17.
J Ovarian Res ; 14(1): 152, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34758863

ABSTRACT

Mitochondrial injury in granulosa cells (GCs) is associated with the pathophysiological mechanism of polycystic ovary syndrome (PCOS). Melatonin reduces the mitochondrial injury by enhancing SIRT1 (NAD-dependent deacetylase sirtuin-1), while the mechanism remains unclear. Mitochondrial membrane potential is a universal selective indicator of mitochondrial function. In this study, mitochondrial swelling and membrane defect mitochondria in granulosa cells were observed from PCOS patients and DHT-induced PCOS-like mice, and the cytochrome C level in the cytoplasm and the expression of BAX (BCL2-associated X protein) in mitochondria were significantly increased in GCs, with p-Akt decreased, showing mitochondrial membrane was damaged in GCs of PCOS. Melatonin treatment decreased mitochondrial permeability transition pore (mPTP) opening and increased the JC-1 (5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide) aggregate/monomer ratio in the live KGN cells treated with DHT, indicating melatonin mediates mPTP to increase mitochondrial membrane potential. Furthermore, we found melatonin decreased the levels of cytochrome C and BAX in DHT-induced PCOS mice. PDK1/Akt played an essential role in improving the mitochondrial membrane function, and melatonin treatment increased p-PDK 1 and p-Akt in vivo and in vitro. The SIRT1 was also increased with melatonin treatment, while knocking down SIRT1 mRNA inhibiting the protective effect of melatonin to activate PDK1/Akt. In conclusion, melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/drug effects , Granulosa Cells/drug effects , Melatonin/pharmacology , Mitochondria/drug effects , Polycystic Ovary Syndrome/metabolism , Sirtuin 1/drug effects , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Adult , Animals , Benzimidazoles/metabolism , Carbocyanines/metabolism , Cytochromes c/drug effects , Cytochromes c/metabolism , Cytoplasm/drug effects , Cytoplasm/metabolism , Female , Gene Knockdown Techniques , Granulosa Cells/metabolism , Granulosa Cells/ultrastructure , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , bcl-2-Associated X Protein/drug effects , bcl-2-Associated X Protein/metabolism
19.
Int J Mol Sci ; 22(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576276

ABSTRACT

Antimicrobial resistance is a growing public health concern that requires urgent action. Biofilm-associated resistance to antimicrobials begins at the attachment phase and increases as the biofilms maturate. Hence, interrupting the initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Herein, we have evaluated the antibacterial and anti-biofilm activities of three ruthenium complexes in different oxidation states with 2-pyridin-2-yl-1H-benzimidazole (L1 = 2,2'-PyBIm): [(η6-p-cymene)RuIIClL1]PF6 (Ru(II) complex), mer-[RuIIICl3(CH3CN)L1]·L1·3H2O (Ru(III) complex), (H2L1)2[RuIIICl4(CH3CN)2]2[RuIVCl4(CH3CN)2]·2Cl·6H2O (Ru(III/IV) complex). The biological activity of the compounds was screened against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa strains. The results indicated that the anti-biofilm activity of the Ru complexes at concentration of 1 mM was better than that of the ligand alone against the P. aeruginosa PAO1. It means that ligand, in combination with ruthenium ion, shows a synergistic effect. The effect of the Ru complexes on cell surface properties was determined by the contact angle and zeta potential values. The electric and physical properties of the microbial surface are useful tools for the examined aggregation phenomenon and disruption of the adhesion. Considering that intermolecular interactions are important and largely define the functions of compounds, we examined interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis.


Subject(s)
Anti-Infective Agents/pharmacology , Benzimidazoles/chemistry , Biofilms/drug effects , Drug Design , Pyridines/pharmacology , Ruthenium/chemistry , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Cell Line , Cell Survival , Coordination Complexes/chemistry , Drug Evaluation, Preclinical , Electrochemistry/methods , Escherichia coli/drug effects , Humans , Hydrogen-Ion Concentration , Kinetics , Ligands , Microbial Sensitivity Tests , Oxygen/chemistry , Pseudomonas aeruginosa/drug effects , Pyridines/metabolism , Staphylococcus aureus/drug effects , Surface Properties
20.
Molecules ; 26(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34443347

ABSTRACT

α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 µM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 µM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.


Subject(s)
Amides/chemistry , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Design , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Salts/chemistry , Benzimidazoles/metabolism , Catalytic Domain , Glycoside Hydrolase Inhibitors/metabolism , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...